	Indian Statistical Institute	
Seco	nd Semester Back Paper Examinati	on 2004-2005
	M.Math II Year	
	Graph Theory and Combinato	rics
Time: 3 hrs	Date:20-07-05	Max. Marks : 100

- 1. Let E be a 5-(24, 8, 1) design. Show that any two distinct blocks of E have 0, 2 or 4 points in common. Show that if two blocks have four points in common then their symmetric difference is a block. [30]
- 2. Let K_9 be the complete graph on 9 vertices. Suppose e of the edges of K_9 are coloured using two colours. If $e \ge 33$ then show that there must be a mono-chromatic triangle (i.e., such that all the edges of the triangle have the same colour.) [20]
- 3. Let B be a block of a non-trivial $2 (v, k, \lambda)$ design. Choose a block $C \neq B$ at random. Find the mean and varience of the random variable $\#(B \cap C)$ (# denotes size.) Hence prove that $\lambda(v-1) \geq k(k-1)$. [20]
- 4. Let G be a graph on n vertices without any clique of size $p \ (p \ge 2)$. Use induction on n (or some other argument) to show that G has at most $\left(1 - \frac{1}{p-1}\right)\frac{n^2}{2}$ edges. [30]